Math 112 - Review for Test 2
Directions: Show your work for full credit. The way you drive your answer is most important.

1) Suppose y is a function of t whose derivative is given by

$$
y^{\prime}=3 y^{2} \quad \text { and that } \quad y=-1 \text { when } t=0 \text {. }
$$

Write a loop program in Maple to approximate the value of y when

1. $t=3$ (Use $\Delta t=0.5$).
2. $t=-3$ (Use $\Delta t=-0.5$)
3. $t=6$ (Use $\Delta t=0.1$).
2) Write a loop program in Maple that performs the Euler's Method to approximate the value of y at $x=1$ on the solution curve to the differential equation

$$
\frac{d y}{d x}=x^{3}-y^{3}
$$

that passes through $(0,0)$. Use $\Delta x=0.2$.
3) Solve the following integrals with an appropriate technique.

1. $\int x^{99} \ln x d x$
2. $\int \frac{3 x-2}{(x-1)\left(x^{2}+1\right)} d x$
3. $\int x \sqrt{2 x+1} d x$
4. $\int x^{2} \ln \sqrt{x} d x$
5. $\int_{2}^{3} \frac{2 x+3}{(x+1)^{2}} d x$
6. $\int_{1}^{e} \frac{\sin (\ln x)}{x} d x$
7. $\int \frac{e^{\tan x}}{1-\sin ^{2} x} d x$
4) Use integration by parts to show : $\int_{a}^{\infty} e^{-x^{2}} d x=\frac{e^{-a^{2}}}{2 a}-\frac{1}{2} \int_{a}^{\infty} \frac{e^{-x^{2}}}{x^{2}} d x$. Hint: Choose $u=\frac{1}{x}$ and $d v=x e^{-x^{2}} d x$.
5) Find the arc length of the curve $f(x)=\frac{1}{3}(x-3) \sqrt{x}$ from $x=0$ to $x=3$.
6) Let $F(x)=\int_{0}^{x} \sqrt{e^{2 t}-1} d t$. Find the arc length of $F(x)$ for $0 \leq x \leq 2$.
7) The base of a certain solid is the circle $x^{2}+y^{2}=36$ and each cross section perpendicular to the y-axis is an equilateral triangle. Find the volume of the solid.
8) Find the volume which results when the region bounded by $y=1 / x$ and $y=1 / x^{2}$ and the line $x=2$ is revolved around the
1. x-axis.
2. y-axis.
9) Find the volume of the solid with the given information about its cross sections.
1. The base of the solid is an isoceles right triangle whose legs are each 5 units long. The cross sections parallel to one of the legs are semicircular.
2. The solid has a circular base with radius 2 , and the cross sections perpendicular to a fixed diameter of the base are squares.
3. The base is an equilateral triangle with side length 10. The cross sections perpendicular to a given altitude of the triangle are semicircles.
10) Derive formulas for the volumes of the following solids.
1. A right circular cone with height h and radius (of the base) r .
2. The cap of a sphere resulting from slicing a sphere of radius r at a distance h from its center.
3. A right pyramid with square base of side length a and height h.
11) Find the area of the region bounded by the curves $y=1-2 x, \quad y=\sqrt{x}, \quad y=-x$.
12) Find the area of the following regions bounded by the given curves by two methods: a) integrating with respect to x, and b) integrating with respect to y.
i) $4 x+y^{2}=0, \quad y=2 x+4$
ii) $x+1=2(y-2)^{2}, \quad x+6 y=7$
13) Find the length of the curve.
i) $y^{2}=x^{3}$ between $(1,1)$ and $(4,8)$.
ii) $y=6 \sqrt{x}, 1 \leq x \leq 4$.
iii) $12 x y=4 y^{4}+3$ between $\left(\frac{17}{2}, 1\right)$ and $\left(\frac{67}{24}, 2\right)$
14) The base of a certain solid is the region bounded above by the line $y=9$ and below by the graph of $y=4 x^{2}$. Cross sections perpendicular to the y-axis are squares. Find the volume of this solid.
15) A solid has a circular base of radius 1 . Parallel cross-sections perpendicular to the base are equilateral triangles. Find the volume of the solid.
16) For each of the following solids, set up integrals that give the volume using both the washer/disk method and the method of cylindrical shells. Then compute the integrals using Maple. Make sure both methods give the same answer.
i) The region bounded by $x=y^{2}$ and $x=-y$ rotated about x-axis.
ii) The region in i) rotated about the line $y=5$.
iii) The region in i) rotated about $x=5$.
iv) Solid obtained by rotating the region bounded by $y=\sqrt{x-1}, y=0, x=5$ about the y -axis.
17) Find the area of the region bounded by the following curves both with respect to x and with respect to y.
1. $y=2^{x}, y=5^{x}, x=-1, x=1$
2. $x=9-y^{2}, y=-3-x$
18) Let R be a rectangle with vertices at the points $(a, 0),(a, h),(b, 0)$, and (b, h), where $h>0$ and $b>a$.

1 . What is the area of R ?
2 . What is the volume of the solid obtained by rotating R about the x-axis?
3. What is the volume of the solid obtained by rotating R about the line $y=-c$, where $c \geq 0$?
4. What is the volume of the solid obtained by rotating R about the line $y=c$, where $c \geq h$?

